

A122720


Number of free generators of degree n of the primitive Lie algebra of the Hopf algebra of parking functions.


0



1, 2, 9, 80, 901, 12564, 206476, 3918025, 84365187, 2034559143, 54368676801, 1595658565373, 51047106371364, 1768603440179357, 65989972332973985, 2638631743605048505, 112577601627965445007, 5105398784598085609386
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Table of n, a(n) for n=1..18.
J.C. Novelli and J.Y. Thibon, Hopf algebras and dendriform structures arising from parking functions, arXiv:math/0511200 [math.CO], 2005.


FORMULA

G.f.: 1  Product_{i>=1} (1t^i)^c(i), where c(i) is the number of connected parking functions of length i.


MATHEMATICA

terms = 18;
s = (1  1/(1 + Sum[(n+1)^(n1)*t^n, {n, 1, terms+1}]))/t + O[t]^(terms+1);
cc = CoefficientList[s, t];
gf = Product[(1  t^i)^cc[[i]], {i, 1, terms+1}] + O[t]^(terms+1);
CoefficientList[gf, t] // Abs // Rest (* JeanFrançois Alcover, Feb 17 2019 *)


CROSSREFS

Sequence in context: A194471 A215629 A221460 * A109519 A193208 A279055
Adjacent sequences: A122717 A122718 A122719 * A122721 A122722 A122723


KEYWORD

nonn


AUTHOR

JeanYves Thibon (jyt(AT)univmlv.fr), Oct 22 2006, Oct 24 2006


STATUS

approved



